Electronic structure and aromaticity of large-scale hexagonal graphene nanoflakes.

نویسندگان

  • Wei Hu
  • Lin Lin
  • Chao Yang
  • Jinlong Yang
چکیده

With the help of the recently developed SIESTA-pole (Spanish Initiative for Electronic Simulations with Thousands of Atoms) - PEXSI (pole expansion and selected inversion) method [L. Lin, A. García, G. Huhs, and C. Yang, J. Phys.: Condens. Matter 26, 305503 (2014)], we perform Kohn-Sham density functional theory calculations to study the stability and electronic structure of hydrogen passivated hexagonal graphene nanoflakes (GNFs) with up to 11,700 atoms. We find the electronic properties of GNFs, including their cohesive energy, edge formation energy, highest occupied molecular orbital-lowest unoccupied molecular orbital energy gap, edge states, and aromaticity, depend sensitively on the type of edges (armchair graphene nanoflakes (ACGNFs) and zigzag graphene nanoflakes (ZZGNFs)), size and the number of electrons. We observe that, due to the edge-induced strain effect in ACGNFs, large-scale ACGNFs' edge formation energy decreases as their size increases. This trend does not hold for ZZGNFs due to the presence of many edge states in ZZGNFs. We find that the energy gaps E(g) of GNFs all decay with respect to 1/L, where L is the size of the GNF, in a linear fashion. But as their size increases, ZZGNFs exhibit more localized edge states. We believe the presence of these states makes their gap decrease more rapidly. In particular, when L is larger than 6.40 nm, we find that ZZGNFs exhibit metallic characteristics. Furthermore, we find that the aromatic structures of GNFs appear to depend only on whether the system has 4N or 4N + 2 electrons, where N is an integer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermal stability study of nitrogen functionalities in a graphene network.

Catalyst-free vertically aligned graphene nanoflakes possessing a large amount of high density edge planes were functionalized using nitrogen species in a low energy N(+) ion bombardment process to achieve pyridinic, cyanide and nitrogen substitution in hexagonal graphitic coordinated units. The evolution of the electronic structure of the functionalized graphene nanoflakes over the temperature...

متن کامل

Tight- binding study of electronic band structure of anisotropic honeycomb lattice

 The two-dimensional structure of graphene, consisting of an isotropic hexagonal lattice of carbon atoms, shows fascinating electronic properties, such as a gapless energy band and Dirac fermion behavior of electrons at fermi surface. Anisotropy can be induced in this structure by electrochemical pressure. In this article, by using tight-binding method, we review anisotropy effects in the elect...

متن کامل

Growth of Hexagonal Columnar Nanograin Structured SiC Thin Films on Silicon Substrates with Graphene–Graphitic Carbon Nanoflakes Templates from Solid Carbon Sources

We report a new method for growing hexagonal columnar nanograin structured silicon carbide (SiC) thin films on silicon substrates by using graphene-graphitic carbon nanoflakes (GGNs) templates from solid carbon sources. The growth was carried out in a conventional low pressure chemical vapor deposition system (LPCVD). The GGNs are small plates with lateral sizes of around 100 nm and overlap eac...

متن کامل

Structural and electronic properties of graphene nanoflakes on Au(111) and Ag(111)

We investigate the electronic properties of graphene nanoflakes on Ag(111) and Au(111) surfaces by means of scanning tunneling microscopy and spectroscopy as well as density functional theory calculations. Quasiparticle interference mapping allows for the clear distinction of substrate-derived contributions in scattering and those originating from graphene nanoflakes. Our analysis shows that th...

متن کامل

Electronic and Aromatic properties of Graphene and Nanographenes of various kinds:

Using suitable Density functional theory (DFT) methods and models of various sizes and symmetries, we have obtained the aromaticity pattern of infinite Graphene, which is an intrinsically collective effect, by a process of “spatial” evolution. Using a similar process backwards we obtain the distinct aromaticity pattern(s) of finite nanographenes, graphene dots, antidots, and graphene nanoribbon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 141 21  شماره 

صفحات  -

تاریخ انتشار 2014